ASIMOV

UBA – CBC – Física (03)	Final Regu	ılar	17-Julio-201	.5		Tema G		
				oj over og det. Egil kalledijar		managa Magazini Magazini		
Apellido:	Nombres:	E 9 E 10	E 11 E 12	_ DNI:	Nota final	Sede:		
E1 E2 E3 E4 E5	E6 E7 E8	E9 E 10	EII EIZ	Correctas	NOta IIIIai	Corrector		
LEA CON ATENCIÓN. Conteste las preguntas indicando la opción elegida con sólo una cruz en los casilleros de la grillo adjunta a cada pregunta. No se aceptan respuestas en lápiz. Si tiene dudas sobre la interpretación de cualquiera de los ejercicios, le agradeceremos que lo indique en el escrito y explique su interpretación. Para aprobar el examen se requiere como mínimo 6 respuestas correctas. Puede usar una hoja personal con anotaciones y su calculadora. Use g = 10 m/s². Dispone de 2 horas 30 minutos. MR AR								
Ejercicio 1. Un cuerpo de un determinado material flota parcialmente sumergido en un líquido. Entonces puede afirmar que: El empuje que recibe el cuerpo es igual al volumen total del cuerpo por el peso específico del líquido. El empuje que recibe el cuerpo es mayor que su peso. El empuje que recibe el cuerpo es igual al volumen sumergido por el peso específico del cuerpo. El empuje que recibe el cuerpo es igual al volumen sumergido por el peso específico del líquido.								
☐ La densidad de la parte sun	 □ La densidad del cuerpo es igual a la densidad del líquido. □ La densidad de la parte sumergida del cuerpo es igual a la densidad del líquido. 							
Ejercicio 2. Un automóvil recorre un camino rectilineo de la siguiente manera: primero se desplaza 4000 metros hacia la derecha a 40 km/h. Luego se desplaza 2000 metros hacia la izquierda a 60 km/h. ¿Cuánto vale el módulo de su velocidad media para todo el recorrido?								
☐ 45 km/h ☐ 15	ÿ km/h, □ □ 3	30 km/h	□ 0 km/	∕h □) 25 km/h	□ 8 km/h		
Ejercicio 3. Desde la terraza de un edificio de 15 m de altura se lanza hacia arriba una piedra con una velocidad inicial de 10 m/s, formando un ángulo de 37° por encima de la horizontal. Calcular la altura máxima, respecto del piso, que alcanza la piedra en su recorrido.								
□ 20,5 m □ 16,8 m □ 22,3 m □ 26,7 m □ 19,6 m □ 25,4 m								
Ejercicio 4. Un cuerpo de masa m puede ser impulsado con un resorte de constante elástica k por una pista horizontal que presenta rozamiento sólo en el tramo AB (4 m de longitud) como muestra la figura. Si se comprime inicialmente el resorte 30 cm, el cuerpo se detiene definitivamente en el punto B. ¿A qué distancia respecto del punto A se detiene definitivamente el cuerpo si ahora la compresión inicial del resorte es de 15 cm?								
□ 1 m □ 3,5 m	□2 m		□ 3 m	□ 2	,5 m	□ 0,5 m		
Ejercicio 5. Un cuerpo que tiene una masa de 3kg, parte del reposo y se mueve en la dirección x bajo la acción de la fuerza F_x representada en la figura. Entonces:								
☐ El trabajo realizado por la ☐ La velocidad a los 2 m es l ☐ La energía cinética del cue ☐ La velocidad final se dupli ☐ El mínimo valor de energía	l5 m/s. rpo es máxima a lo caría si su masa fue	s 8 m. era la mitad.	60 0	2 4		x(m)		

☐ El cuerpo se detiene a los 8 m.

	encuentra a una	altura de 3,5 m resp	ecto del piso, se lanz	a desde el piso ver	cuyo módulo es de 0,5 ticalmente y hacia arrib la piedra en el moment	a una piedra que
	□ 7,5 m/s	□ 15 m/s	□ 10,5 m/s	□ 5 m/s	☐ 1,75 m/s	☐ 6 m/s
		u órbita, ¿A qué dista			pleta alrededor de la Ti ocar otro satélite para qu	
	. □ 2,08 R _S	☐ 4,15 R _s	□ 1,41 R _S	□ 1,59 R _s	□ 2,63 R _s	□ 3,14 R _s
	planta baja al q	uinto piso con veloc		amos P al peso de	de un ascensor. El asce el paquete y N a la fuer	
	☐ El trabajo de ☐ La potencia ☐ El trabajo de ☐ El trabajo de	e la fuerza N es nulo. instantánea de la fue e la resultante de las e la fuerza N es posit	rza P varía con la altu fuerzas que actúan so	ıra. bre el paquete es p		
	16 kg y 4 kg, re coeficiente de re	espectivamente. La s ozamiento estático e	está compuesto por c uperficie horizontal i ntre los bloques es 0, car a A para que B	no presenta rozami 5. Entonces el mó	ento, y el F dulo de la	A B
	□ 50 N	□ 100 N	□ 200 N	□ 800 N	400 N	□ 1600 N
	en su extremo l	ibre (ver figura). La rpo describe una tra	cuerda es inextensib	le, de masa despre	crda de longitud L = 1 n ciable y forma un ángu dulo cónico). La veloc	lo de 37° con la
	☐ El módulo de ☐ El módulo de ☐ El módulo de ☐ El módulo de	e la aceleración centre e la tensión que ejerce e la aceleración centre e la aceleración centre	e la soga es igual a 8. ripeta vale 7,5 m/s².	3 N.	37° L	terriori Settergan Secretic Settinos Settinos
	densidad $\delta_a =$		enta un tubo en "U" de densidad $\delta_m = 1$ em es:			And the state of t
	9,7	□ 10,8	11,5	3,9 🗆 12,	1 14,8	
•	un río de 40 m e	de ancho partiendo d cuencia de la corrien	esde A, apuntando p	erpendicularmente	cuyo módulo es 0,4 m/s a la orilla opuesta, don C, distante 30 m de B.	de está el punto
	□ 6 m/s	□ 0.6 m/s	□ 2 m/s	□ 3 m/s	□ 0.2 m/s	□ 0.3 m/s

GRILLA

IIRA	CF	BC – I	?ícica	(03)	1	Tinal	Reg	nlar		 17-Jul	lio-201	.5		Tema (J
UDA	- 01	,	ISICA	(05)		AXESSA	<u> </u>	ta i sa x	inez 2) Zinez an			President Higifyi Abd	grafij Rojanski sag	teritaria. Bilitaria	
Apel	ido:				<u> </u>	Nom	bres:				<u> </u>	_ DNI:		Sede:	•
E 1	E 2	E 3	E 4	E 5	E 6	E 7	E 8	E 9	E 10	E 11	E12	Correctas	Nota final	corrector	
. :			40 M	1.53											
adjunt ejercio minin	LEA CON ATENCIÓN. Conteste las preguntas indicando la opción elegida con sólo una cruz en los casilleros de la grilla adjunta a cada pregunta. No se aceptan respuestas en lápiz. Si tiene dudas sobre la interpretación de cualquiera de los ejercicios, le agradeceremos que lo indique en el escrito y explique su interpretación. Para aprobar el examen se requiere como mínimo 6 respuestas correctas. Puede usar una hoja personal con anotaciones y su calculadora. Use $g = 10 \text{ m/s}^2$. Dispone de 2 horas 30 minutos. MR AR														
afirm	ar que empu	: ije que	recib	e el cu	erpo e	s igua	l al vo	lumen	total d		ngasan Basaya I		un líquido. cífico del líq	Entonces puec	1e
	empu empu dens dens	ije que ije que idad d idad d	recib recib el cue e la pa	e el cu e el cu rpo es arte su	erpo e erpo e igual : mergio	s igua s igua a la de la del	l al vo nsidad cuerpo	lumen lumen del li es ig	sumer sumer quido. ual a la	gido po densio	or el pe lad del	so específico	o del cuerpo. o del líquido.		
hacia	Ejercicio 2. Un automóvil recorre un camino rectilíneo de la siguiente manera: primero se desplaza 4000 metros hacia la derecha a 40 km/h. Luego se desplaza 2000 metros hacia la izquierda a 60 km/h. ¿Cuánto vale el módulo de su velocidad media para todo el recorrido?														
	15 km	/h;	(5 km/l	1		30 kr	n/h	-] 0 km	/h) 25 km/h	□ 8 km/h	
inicia piso,	Ejercicio 3. Desde la terraza de un edificio de 15 m de altura se lanza hacia arriba una piedra con una velocidad inicial de 10 m/s, formando un ángulo de 37° por encima de la horizontal. Calcular la altura máxima, respecto del piso, que alcanza la piedra en su recorrido. 20,5 m 22,3 m 26,7 m 19,6 m 25,4 m														
			grajevis a												
Ejercicio 4. Un cuerpo de masa m puede ser impulsado con un resorte de constante elástica k por una pista horizontal que presenta rozamiento sólo en el tramo AB (4 m de longitud) como muestra la figura. Si se comprime inicialmente el resorte 30 cm, el cuerpo se detiene definitivamente en el punto B. ¿A qué distancia respecto del punto A se detiene definitivamente el cuerpo si ahora la compresión inicial del resorte es de 15 cm?															
	m) 3,5 n			□ 2	m	Manga Bara Bara	□3	e Parti Transferi		2,5 m	□ 0,5 m	
la fu	erza F	x repre	sentac	la en la	a figur	a. Ente	onces:			repos		nueve en la (N)	dirección x b	ajo la acción	de
	a velo a enei a velo l míni	cidad gía cir cidad	a los 2 nética final s lor de	2 m es del cu se dupl energ	15 m/s erpo e icaría ía ciné	s. s máxi si su r	ima a l nasa fi	os 8 n uera la	n. n mitad os 8 m.		0 -30	2 4		x(m)	
	. ouoi				:	. + T.							3IM	IV	

GRELLA

Ejercicio 6. Un globo asciende en for encuentra a una altura de 3,5 m respe lo alcanza luego de 0,5 segundos. En globo es:	cto del piso, se lanza de	esde el piso verticali	mente y hacia arriba u	ına piedra que
□ 7,5 m/s □ 15 m/s	□ 10,5 m/s	5 m/s	□ 1,75 m/s	□ 6 m/s
Ejercicio 7. Un satélite geoestaciona R _S al radio de su órbita, ¿A qué distar dar una vuelta completa?	rio tarda 24 hs en dar acia del centro de la Tie	una vuelta completa erra se debe colocar	alrededor de la Tien otro satélite para que	ra. Llamando tarde 48 hs en
□ 2,08 R _S □ 4,15 R _S	□ 1,41 R _s	1,59 Rs	☐ 2,63 R _S	□ 3,14 R _S
Ejercicio 8. Considere un paquete que planta baja al quinto piso con velocio piso del ascensor sobre el paquete. En	dad constante. Llamam	sobre el piso de ur os P al peso del pa	n ascensor. El ascens quete y N a la fuerza	or sube desde que ejerce el
☐ La energía mecánica del paquete s☐ El trabajo de la fuerza N es nulo.	e mantiene constante.			
La potencia instantánea de la fuerz El trabajo de la resultante de las fu El trabajo de la fuerza N es positiv El trabajo de la fuerza P no depend	ierzas que actúan sobre 70.	el paquete es positi	vo. [18]	
Ejercicio 9. El sistema de la figura el 16 kg y 4 kg, respectivamente. La su coeficiente de rozamiento estático ent fuerza mínima F que se debe aplica gravedad es:	perficie horizontal no p re los bloques es 0,5. I	presenta rozamiento. Entonces el módulo	y el F	A B
□ 50 N □ 100 N	□ 200 N	□ 800 N	(2)400 N	□ 1600 N
Ejercicio 10. Se hace girar un cuerpo en su extremo libre (ver figura). La c vertical. El cuerpo describe una tray constante. Entonces:	uerda es inextensible, o	de masa despreciabl	e y forma un ángulo	de 37° con la
El módulo de la tensión que ejerce El módulo de la aceleración centríp El módulo de la tensión que ejerce El módulo de la aceleración centríp El módulo de la aceleración centríp El módulo de la aceleración centríp En todo instante, la tensión es para	peta vale 16 m/s ² . la soga es igual a 8,3 N peta vale 7,5 m/s ² . peta vale 10 m/s ² .		37° L	en en joer oan de sta Geregorië Geregorië oan de se Geregorië oan Geregorië oan de sta
Ejercicio 11. En la figura se represen densidad $\delta_a = 1$ kg/L y mercurio d $h_1 = 15$ cm, entonces la altura h_2 en cm	e densidad $\delta_{\rm m} = 13,6$	ierto a la atmósfera kg/L. Considere o	con agua de que la altura	Annual Property of the Control of th
© 9,7	11,5	□ 12,1	14,8	Mercuri mercuri
Ejercicio 12. Un deportista puede ren un río de 40 m de ancho partiendo de B. Como consecuencia de la corriente velocidad de la corrriente es:	sde A, apuntando perpe	endicularmente a la	orilla opuesta, donde	está el punto
□ 6 m/s □ 0,6 m/s	□ 2 m/s	□ 3 m/s	□ 0,2 m/s	(S)0,3 m/s