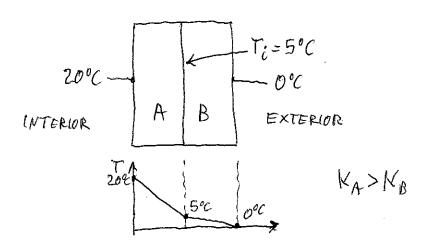
UBA CBC	1		Compl									
		Horario: Ma y Vi 7 a 13hs. Fecha: 12/07/2019										
Apelli	ido:							······································	·········	·	СОМІ	SIÓN
Nomb	ores:						**************************************			D.N.I		· ·
			Reserv	ado pa	Correctas	Calific.	Condición					
1	1 4	1 4	[A		T				T			
	2	3	4	5	6	7	8	9	10			
		L	L		<u></u>	<u> </u>	<u></u>	<u> </u>		10 ejercicios de d		
en Iapi	iz. Si tie	ene dude	as respe	ecto a le	a interp	retació	n de cu	alquiera	i de los e	to que la acompa ejercicios, indíquel dora. Dispone de	lo en el examei	tan respuestas n y explique su JS-MB
C Que	ones po e parte e no oc e parte	de la m urran c de la m	urrir. asa de a ambios asa de l	agua líq de fase nielo se	uida se en el s funda i	solidifi istema. mientra	que. Is la ten	nperatu		récipiente, indique		,-
∐ Que □ Que	e la tem e la tem	iperatui iperatui	ra del h ra del a	ielo aun gua aun	nente y nente y	la del i la del fi	agua pe ilelo di	ermanez śminuya	ca const	ante.		
esta to	rmada	por do	s pane	les, un	o inter	ior A y	otro e	exterior	or (a 0°C) B, de di Entonces) y conduce calor istinto máterial y s:	en régimen es y del mismo é	stacionario. espesor. La
 □ La conductividad térmica del panel A es mayor que la del B. □ La potencia calórica en el panel B es menor que en el A. □ El gradiente de temperatura es menor en A que en el El gradiente de temperatura es menor en A que en el El gradiente de temperatura es menor en A que en el El gradiente de temperatura es menor en A que en el El gradiente de temperatura es menor que en el El gradiente de temperatura es menor que en el El gradiente de temperatura es menor que en el El gradiente de temperatura es menor que en el El gradiente de temperatura es menor que en el El gradiente de temperatura es menor que en el El gradiente de temperatura es menor en A que en el El gradiente de temperatura es menor que en el gradiente de temperatura es menor que en el gradiente de temperatura el gradiente de temperatura el gradiente de temperatura el gradiente de temperatura el gradiente									que en el B			
su emis ambien	sividad te a 20	es 0,9.	¿Qué d	antidad	d de ca	lor (net	ta) inte	imadan rcambia	ientė, 2 r a aproxin	m². La temperatu nadamente por l	ra de la piel es nora por radia	de 33 ⁰ C y ción en un
□ abso □ cede					ede 435 ede 270				absorbe	•		
.empera	atura i	_{amb} = 25	C. Lia	mamos	Δs_{Agua}	Δs_{Amb}	/Δs _u ai	las vari	aciones	eratura T _{agua} = 1 de entropía del a irmico. Se cumplé	igua, del ambi	mbiente a ente y del
		S _{Amb} < 0	-		Δ	S _{Agua} < C); ∆s _{Amb}	> 0 y ∆s	s _U = 0	☐ ΔS _{Agua} < 0;	$\Delta s_{Amb} > 0 y \Delta s_0$	· · > 0

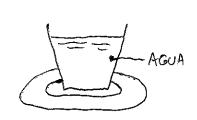
 \triangle $\Delta s_{Agua} > 0$; $\Delta s_{Amb} < 0$ y $\Delta s_{U} = 0$

 $\square \Delta s_{Agua} > 0$; $\Delta s_{Amb} < 0$ y $\Delta s_{U} > 0$


 \Box $\Delta s_{Agua} > 0$; $\Delta s_{Amb} > 0$ y $\Delta s_{U} < 0$

	S. Un milimol de gas ideal monoatómico evoluciona reversiblemente como muestra la figura (la evolución AB es isotérmica, BC es isocórica y CA isobárica). Si Δ U representa las variaciones de energía interna del gas, L el trabajo realizado por el gas y Q el calor intercambiado por el gas con el medio exterior. Se cumple que: Datos: $R = 8,3145$ J/mol K; $c_p = 5R/2$; $c_V = 3R/2$												
				$\Box L_{BCA} = 0$ $\Box Q_{BCA} = -25 J$	ľ		•						
	6. Se tienen dos placas signo contrario, distanc experimenta una fuer (aproximadamente):	iauas I IIIIII entre S	ii. Una carga positiva	i de 15 mC uhicad	a on al achagia vari	erficial de carga y o entre las placas as placas es de							
	□ 3.10 ⁶ V □ 15.10	0 ⁻³ V	33 V □ 45 .	10 ⁻³ V	⊃ 500 V □ 3(000 V							
	7. Se tienen dos capacito	ores A y B de distin	ta capacidad (C _A >C _B)	. Se verifica que, s	si se los conecta a ur	na batería:							
	 □ en serie entonces Q_A □ en serie entonces Q_A □ en serie Q_A = Q_B y A a 	≠ Q _B y V _A =V _B .		en paralelo $Q_A = 0$	_B y almacenan la mis Q _B y V _A =V _B . _B y B almacena más o								
		y C de la figura tien e las otras y la C el c \square $R_C < R_A < R_B$ \square $R_C = R_A < R_B$	nen la misma resisti doble de área (S). Se R _A >R _C >R _B R _A >R _B =R _C	vidad. La B tiene verifica que:	el S 21	25							
(9. En el circuito de la fig batería ε sea la máxima μ estar: Las 3 abiertas.	posible. Para que e	so ocurra las llaves 3 cerradas.	L ₁ , L ₂ y L ₃ deben	R ₂ R ₃	R1							
(\square L ₁ y L ₃ cerradas; L ₂ abide \square L ₂ y L ₃ cerradas; L ₁ abide	erta. \Box L ₁ y	L_2 cerradas; L_3 abiert L_3 abiertas; L_2 cerrad	a.		R ₄							
Į	10. En el circuito de la $(R_1 = 625 \Omega, R_2 = 1000 \Omega)$ batería ϵ al circuito es apr	$y R_3 = 1000 Ω$). L	erímetro ideal mid a potencia entrega	e 12,5 mA ada por la									
	☐ 11 mW ☐ 87 mW ☐ 141 mW ☐ 217 m\						•						

BIOF/SICA, Receperatorio del 200 P, vu 12/7/2019



$$\frac{Q}{t} = \varepsilon \tau A \tau^{4}$$
 $\frac{Q}{t}$ | Nuta = $\varepsilon \tau A \left(T_{c}^{4} - T_{AMB}^{4} \right)$

En 1 hora: Pot = 513. Soo Jouls = 513 KJ

TAGUA =
$$10^{\circ}$$
C \times EL AGUA RECIBE CALOR \Rightarrow

AGUA

TAMB = 25° C Δ SAGUA = \oplus
 \times EL AMDIENTE CEDE CALOR \Rightarrow Δ SAMB = \ominus

* LA EVOLUCIÓN ES IRREVERSIBLE => $\Delta S_{univ} = \oplus$

(5) P P P

$$\Rightarrow P_A = 5 K pa$$

$$\Delta U_{CICLO} = 0$$

$$Q = \Delta U + L$$

$$L_{BCA} = \Theta$$

$$L_{BCA} = L_{BC} + L_{CA} \implies L_{BCA} = Area_{AC} \implies$$

$$L_{BCA} = P. (N_F - N_o) \implies L_{BCA} = 5 \text{ Kpa} (11 - 52)$$

$$L_{BCA} = \Theta 201 \text{ Kpa}$$

$$= 0.20 \text{ M}^3 + 1.60$$

$$\begin{array}{c}
\Rightarrow Q_{BCA} = L_{BCA}(\neq 0) \Rightarrow Q_{BCA} \neq 0 \Rightarrow Q_{BCA} = \ominus 20 \text{ Jouls} \\
Q_{BCA} = \Delta y_{BCA} + L_{BCA}
\end{array}$$

(6) THITHHAM V=E,d

1 mm +15 mC
$$\rightarrow Q$$
 F

PLACA

L=q.V=qEd

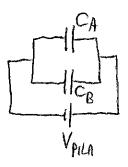
$$E = \frac{F}{q} \implies E = \frac{500 \,\text{N}}{15 \,\text{mc}} \implies E = 33.3 \,\frac{\text{N}}{\text{mc}} \implies V = 33.3 \times 10^{+3} \,\frac{\text{N}}{\text{c}} \cdot 1 \times 10^{-3} \,\text{m}$$

$$\implies V = 33 \,\text{Volts}$$

(Ŧ)

$$C = \frac{Q}{V} \implies V = \frac{Q}{C}$$

$$C_{A} = C_{B} \quad V_{C_{A}} = C_{B} \quad V_{C_{A}} + V_{C_{B}}$$

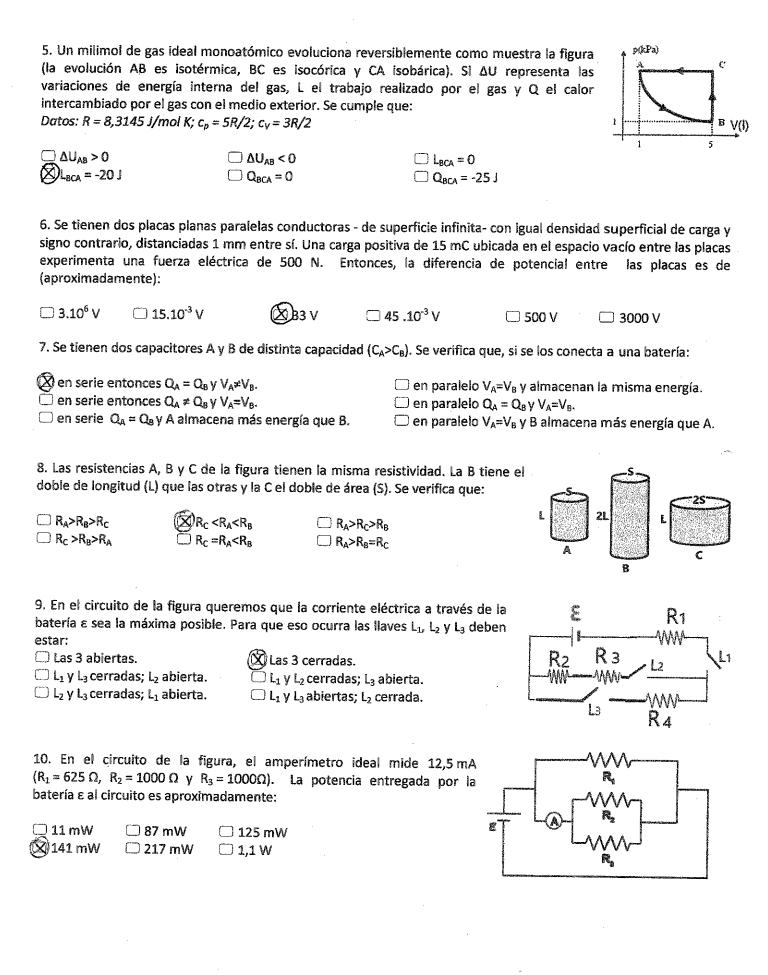

$$C_{A} > C_{B} \quad U = \frac{1}{2} C V^{2} = \frac{1}{2} \frac{Q^{2}}{C} = \frac{1}{2} Q \cdot V$$

$$U = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}Q.V$$

UCA < UCB

En Paralelo: VA=VB

(8)


$$2 = \int_{SOP} \frac{l}{SOP}$$

$$R = \int \frac{l}{SUP} \frac{l}{SUP - 1m^2} = \frac{l}{R} = \int \frac{1m}{1m^2} \frac{1}{R} \frac{2m}{1m^2} \frac{1}{R} \frac{2m}{1m^2} \frac{1}{R} \frac{1m}{2m^2}$$

$$\Rightarrow$$
 $R_B > R_A > R_c$ σ $R_c < R_A < R_B$

BIOFISICA-RECUPALL 2007 + GRILA 12/7/2019

UBA CBC	l l	Complementario Segundo Parcial de Biofísica (53)												
Horario: Ma y Vi 7 a 13hs. Fecha: 12/07/201 Apellido:										<u>19</u>	C	<u>l</u> OMISI	L ÓN	
Nomi							· . · · · · · · · · · · · · · · · · · ·			D.N.I				
Reservado para la corrección									Correctas	Calific.		Condiciór		
	Τ	· - · · ·	I .	T	T			· ·						
1	2	3	4	5	6	7	8	9	10	_				
respue en láp	esta cor iz. Si tie	recta qu ene dud	ie debe as resp	elegir i ecto a l	marcan a interp	do con pretació	una cru n de cu	z (X) el a alquiera	cuadradi 1 de los e	10 ejercicios de to que la acomp ejercicios, indíque adora. Dispone de	aña. No se e elo en el ex	acepta	n respu v expliq	iesto
tempe situac Qu Qu Qu Qu	eratura lones po le parte le no oc e parte	de 0°C odría od de la m urran o de la m	y pre urrir. asa de ambios asa de	sión no agua lío de fase hielo se	rmal. S quida se e en el s e funda	SI se ag e solidifi sistema mientra	gita rep ique. as la ter	etidam nperatu	ente el	ua líquida y hielo recipiente, indic gua permanece o	que cuál d	•		
☐ Qu ☐ Qu 2. La p Está fe	e la tem è la tem pared de ormada	nperatu nperatu e una vi por do	ra del h ra del a ivienda os pane	ielo au gua au separa eles, ur	mente y mente y el inte no inte	y la del y la del l rior (a 2 rior A y	agua po hielo di 20°C) de 7 otro 6	ermane isminuy el exteri exterior	zca const á. or (a 0°C B, de d	c) y conduce cald distinto material				
La c	eratura e conductiv potencia alor fluye	/idad tér calórica	mica de en el pa	l panel / inel B es	\ es may menor	/or que l que en e	a del B.	(X	El gradie	s: B es mejor condu ente de temperatu ncia calórica en el	ıra es menor	en A qu	ue en el	
su em ambie		es 0,9.) ⁰ C?	¿Qué	cantida	d de c	alor (ne	eta) inte			m². La tempera madamente por				
	orbe 58 le 3221				ede 43 ede 27	•			absorbe	e 376,9 J 13 kJ				
tempe	ratura -	$\Gamma_{amb} = 2!$	5 °C. Ll	amamo	s Δs _{Agua}	, Δs _{Amb}	y Δs _U a	las va	iaciones	peratura T _{agua} = de entropía de érmico. Se cump	l agua, del	un am ambie	biente nte y c	a lel
	_{gua} < 0; <i>l</i> _{gua} > 0; <i>l</i>					Δs _{Agua} < Δs _{Agua} >		-			0; Δs _{Amb} > 0 0; Δs _{Amb} < 0			

GRILLA COMPLEMENTARIO SEGUNDO PARCIAL 53

1. Un sistema está compuesto por un recipiente adiabático ideal con agua líquida y hielo picado en equilibrio a una temperatura de 0°C y presión normal. Si agita repetidamente el recipiente, indique cuál de las siguientes situaciones podría ocurrir.	se								
 □ Que parte de la masa de agua líquida se solidifique. □ Que no ocurran cambios de fase en el sistema. □ Que no ocurran cambios de fase en el sistema. □ Que la temperatura de la masa de hielo se funda mientras la temperatura del agua permanece constante. □ Que la temperatura del agua aumente mientras una fracción de hielo se funde. □ Que la temperatura del hielo aumente y la del agua permanezca constante. □ Que la temperatura del agua aumente y la del hielo disminuya. 									
2. La pared de una vivienda separa el interior (a 20°C) del exterior (a 0°C) y conduce calor en régimen estacionario. Está formada por dos paneles, uno interior y otro exterior B, de distinto material y del mismo espesor. La temperatura en los puntos de unión de ambos paneles es de 5°C. Entonces:	r A								
 □ La conductividad térmica del panel A es mayor que la del B. □ La potencia calórica en el panel B es menor que en el A. □ El calor fluye a través de los dos paneles por convección. □ El gradiente de temperatura es menor en A que en el B. □ La potencia calórica en el panel B es mayor que en el A. 									
3. Un ser humano posee una superficie corporal de, aproximadamente, 2 m². La temperatura de la piel es de 33 $^{\circ}$ C y su emisividad es 0,9. ¿Qué cantidad de ca (neta) intercambia aproximadamente por hora por radiación en un ambiente a 20 $^{\circ}$ C? $\sigma = 5,67x10^{\circ}~W/m^2K^4$ (constante de Stefan-Boltzmann).	lor								
□ absorbe 58,8 J □ cede 435,7 J □ absorbe 376,9 J □ cede 3221 kJ □ cede 2708 kJ □ cede 513 kJ									
4. Un vaso que contiene agua se encuentra inicialmente a una temperatura $T_{agua} = 10^{\circ}C$ en un ambiente a temperatura $T_{amb} = 25^{\circ}C$. Llamamos Δs_{Agua} , Δs_{Amb} y Δs_{U} a las variaciones de entropía del agua, del ambiente y del universo entre el estado inicial y el estado en que se alcanza el equilibrio térmico. Se cumple que:									
5. Un milimol de gas ideal monoatómico evoluciona reversiblemente como muestra la figura (la evolución AB es isotérmica, BC es isocórica y CA isobárica). Si representa las variaciones de energía interna del gas, L el trabajo realizado por el gas y Q el calor intercambiado por el gas con el medio exterior. Se cumple que parte la complexa de la calor intercambiado por el gas con el medio exterior. Se cumple que parte la calor intercambiado por el gas con el medio exterior. Se cumple que parte la calor intercambiado por el gas con el medio exterior. Se cumple que parte la calor intercambiado por el gas con el medio exterior. Se cumple que parte la calor intercambiado por el gas con el medio exterior. Se cumple que parte la calor intercambiado por el gas con el medio exterior. Se cumple que parte la calor intercambiado por el gas con el medio exterior. Se cumple que parte la calor intercambiado por el gas con el medio exterior. Se cumple que parte la calor intercambiado por el gas con el medio exterior. Se cumple que parte la calor intercambiado por el gas con el medio exterior. Se cumple que parte la calor intercambiado por el gas con el medio exterior. Se cumple que parte la calor intercambiado por el gas con el medio exterior. Se cumple que parte la calor intercambiado por el gas con el medio exterior. Se cumple que parte la calor intercambiado por el gas con el medio exterior del calor intercambiado por el gas con el medio exterior del calor intercambiado por el gas con el medio exterior del calor intercambiado por el gas con el medio exterior del calor intercambiado por el gas con el medio exterior del calor intercambiado por el gas con el medio exterior del calor intercambiado por el gas con el medio exterior del calor intercambiado por el gas con el medio exterior del calor intercambiado por el gas con el medio exterior del calor intercambiado por el gas con el medio exterior del calor intercambiado por el gas con el medio exterior del calor intercambiado por el gas con el medio exterior del calor intercambi	ΔŲ ue:								
$ \Box \Delta U_{AB} > 0 \qquad \Box \Delta U_{AB} < 0 \qquad \Box L_{BCA} = 0 $ $ \Box Q_{BCA} = -25 \text{ J} $ $ \Box Q_{BCA} = -25 \text{ J} $									
6. Se tienen dos placas planas paralelas conductoras - de superficie infinita- con igual densidad superficial de carga y signo contrario, distanciadas 1 mm entre sí. Una carga positiva de 15 mC ubicada en el espacio vacío entre las placas experimenta una fuerza eléctrica de 500 N. Entonces, la diferencia de potencial entre las placas es de (aproximadamente):									
□ 3.10 ⁶ V □ 15.10 ⁻³ V □ 45.10 ⁻³ V □ 500 V □ 3000 V									
7. Se tienen dos capacitores A y B de distinta capacidad (C _A >C _B). Se verifica que, si se los conecta a una batería:									
8. Las resistencias A, B y C de la figura tienen la misma resistividad. La B tiene el doble de longitud (L) que las otras y la C el doble de área (S). Se verifica que:									
$ \Box R_A > R_B > R_C \qquad \Box R_C < R_B < \Box R_C > R_B $ $ \Box R_C > R_B > R_A \qquad \Box R_C = R_A < R_B \qquad \Box R_A > R_B = R_C $									
9. En el circuito de la figura queremos que la corriente eléctrica a través de la batería ε sea la máxima posible. Para que eso ocurra las llaves L ₁ , L ₂ y L ₃ debestar: □ Las 3 abiertas. □ L ₁ y L ₂ cerradas; L ₂ abierta. □ L ₁ y L ₂ cerradas; L ₃ abierta.	en								
\square L ₂ y L ₃ cerradas; L ₁ abierta. \square L ₁ y L ₃ abiertas; L ₂ cerrada.									
\square L ₂ y L ₃ cerradas; L ₁ abierta. \square L ₁ y L ₃ abiertas; L ₂ cerrada. 10. En el circuito de la figura, el amperímetro ideal mide 12,5 mA (R ₁ = 625 Ω, R ₂ = 1000 Ω y R ₃ = 1000Ω). La potencia entregada por la batería ε al circuito aproximadamente:	es								